Learning with noisy label (LNL) is a classic problem that has been extensively studied for image tasks, but much less for video in the literature. A straightforward migration from images to videos without considering the properties of videos, such as computational cost and redundant information, is not a sound choice. In this paper, we propose two new strategies for video analysis with noisy labels: 1) A lightweight channel selection method dubbed as Channel Truncation for feature-based label noise detection. This method selects the most discriminative channels to split clean and noisy instances in each category; 2) A novel contrastive strategy dubbed as Noise Contrastive Learning, which constructs the relationship between clean and noisy instances to regularize model training. Experiments on three well-known benchmark datasets for video classification show that our proposed tru{\bf N}cat{\bf E}-split-contr{\bf A}s{\bf T} (NEAT) significantly outperforms the existing baselines. By reducing the dimension to 10\% of it, our method achieves over 0.4 noise detection F1-score and 5\% classification accuracy improvement on Mini-Kinetics dataset under severe noise (symmetric-80\%). Thanks to Noise Contrastive Learning, the average classification accuracy improvement on Mini-Kinetics and Sth-Sth-V1 is over 1.6\%.
translated by 谷歌翻译
视频文本预训练(VTP)旨在从大规模的网络视频中学习可转移的代表。迄今为止,几乎所有现有的VTP方法都仅限于基于检索的下游任务,例如视频检索,而它们在基于本地化的任务(例如时间基础)上的转移潜力不足。在本文中,我们实验分析并证明了当前VTP方法与本地化任务的不相容性,并提出了一种新颖的面向定位的视频文本预训练框架,称为LocvTP。具体而言,我们执行细粒对比度对准作为通过剪贴字对数发现方案对粗粒粒度的补充。为了进一步增强学习功能的时间推理能力,我们提出了一个上下文投影头和暂时意识的对比损失,以感知上下文关系。对六个数据集的四个下游任务进行的广泛实验表明,我们的LOCVTP在基于检索和基于本地化的任务上都达到了最先进的性能。此外,我们进行了全面的消融研究和彻底的分析,以探索最佳的模型设计和培训策略。
translated by 谷歌翻译
The task of reconstructing 3D human motion has wideranging applications. The gold standard Motion capture (MoCap) systems are accurate but inaccessible to the general public due to their cost, hardware and space constraints. In contrast, monocular human mesh recovery (HMR) methods are much more accessible than MoCap as they take single-view videos as inputs. Replacing the multi-view Mo- Cap systems with a monocular HMR method would break the current barriers to collecting accurate 3D motion thus making exciting applications like motion analysis and motiondriven animation accessible to the general public. However, performance of existing HMR methods degrade when the video contains challenging and dynamic motion that is not in existing MoCap datasets used for training. This reduces its appeal as dynamic motion is frequently the target in 3D motion recovery in the aforementioned applications. Our study aims to bridge the gap between monocular HMR and multi-view MoCap systems by leveraging information shared across multiple video instances of the same action. We introduce the Neural Motion (NeMo) field. It is optimized to represent the underlying 3D motions across a set of videos of the same action. Empirically, we show that NeMo can recover 3D motion in sports using videos from the Penn Action dataset, where NeMo outperforms existing HMR methods in terms of 2D keypoint detection. To further validate NeMo using 3D metrics, we collected a small MoCap dataset mimicking actions in Penn Action,and show that NeMo achieves better 3D reconstruction compared to various baselines.
translated by 谷歌翻译
When a large language model (LLM) performs complex reasoning by chain of thought (CoT), it can be highly sensitive to individual mistakes. We have had to train verifiers to address this issue. As we all know, after human inferring a conclusion, they often check it by re-verifying it, which can avoid some mistakes. We propose a new method called self-verification that uses the conclusion of the CoT as a condition to build a new sample and asks the LLM to re-predict the original conditions which be masked. We calculate an explainable verification score based on the accuracy. This method can improve the accuracy of multiple arithmetics and logical reasoning datasets when using few-shot learning. we have demonstrated that LLMs can conduct explainable self-verification of their own conclusions and achieve competitive reasoning performance. Extensive experimentals have demonstrated that our method can help multiple large language models with self-verification can avoid interference from incorrect CoT. Code is available at \url{https://github.com/WENGSYX/Self-Verification}
translated by 谷歌翻译
Machine Learning (ML) approaches have been used to enhance the detection capabilities of Network Intrusion Detection Systems (NIDSs). Recent work has achieved near-perfect performance by following binary- and multi-class network anomaly detection tasks. Such systems depend on the availability of both (benign and malicious) network data classes during the training phase. However, attack data samples are often challenging to collect in most organisations due to security controls preventing the penetration of known malicious traffic to their networks. Therefore, this paper proposes a Deep One-Class (DOC) classifier for network intrusion detection by only training on benign network data samples. The novel one-class classification architecture consists of a histogram-based deep feed-forward classifier to extract useful network data features and use efficient outlier detection. The DOC classifier has been extensively evaluated using two benchmark NIDS datasets. The results demonstrate its superiority over current state-of-the-art one-class classifiers in terms of detection and false positive rates.
translated by 谷歌翻译
As the deep learning rapidly promote, the artificial texts created by generative models are commonly used in news and social media. However, such models can be abused to generate product reviews, fake news, and even fake political content. The paper proposes a solution for the Russian Artificial Text Detection in the Dialogue shared task 2022 (RuATD 2022) to distinguish which model within the list is used to generate this text. We introduce the DeBERTa pre-trained language model with multiple training strategies for this shared task. Extensive experiments conducted on the RuATD dataset validate the effectiveness of our proposed method. Moreover, our submission ranked second place in the evaluation phase for RuATD 2022 (Multi-Class).
translated by 谷歌翻译
We consider the straggler problem in decentralized learning over a logical ring while preserving user data privacy. Especially, we extend the recently proposed framework of differential privacy (DP) amplification by decentralization by Cyffers and Bellet to include overall training latency--comprising both computation and communication latency. Analytical results on both the convergence speed and the DP level are derived for both a skipping scheme (which ignores the stragglers after a timeout) and a baseline scheme that waits for each node to finish before the training continues. A trade-off between overall training latency, accuracy, and privacy, parameterized by the timeout of the skipping scheme, is identified and empirically validated for logistic regression on a real-world dataset.
translated by 谷歌翻译
In deep learning, neural networks serve as noisy channels between input data and its representation. This perspective naturally relates deep learning with the pursuit of constructing channels with optimal performance in information transmission and representation. While considerable efforts are concentrated on realizing optimal channel properties during network optimization, we study a frequently overlooked possibility that neural networks can be initialized toward optimal channels. Our theory, consistent with experimental validation, identifies primary mechanics underlying this unknown possibility and suggests intrinsic connections between statistical physics and deep learning. Unlike the conventional theories that characterize neural networks applying the classic mean-filed approximation, we offer analytic proof that this extensively applied simplification scheme is not valid in studying neural networks as information channels. To fill this gap, we develop a corrected mean-field framework applicable for characterizing the limiting behaviors of information propagation in neural networks without strong assumptions on inputs. Based on it, we propose an analytic theory to prove that mutual information maximization is realized between inputs and propagated signals when neural networks are initialized at dynamic isometry, a case where information transmits via norm-preserving mappings. These theoretical predictions are validated by experiments on real neural networks, suggesting the robustness of our theory against finite-size effects. Finally, we analyze our findings with information bottleneck theory to confirm the precise relations among dynamic isometry, mutual information maximization, and optimal channel properties in deep learning.
translated by 谷歌翻译
This is a theoretical paper, as a companion paper of the plenary talk for the same conference ISAIC 2022. In contrast to conscious learning, which develops a single network for a normal life and is the main topic of the plenary talk, it is necessary to address the currently widespread approach, so-called "Deep Learning". Although "Deep Learning" may use different learning modes, including supervised, reinforcement and adversarial modes, almost all "Deep Learning" projects apparently suffer from the same misconduct, called "data deletion" and "test on training data". Consequently, Deep Learning almost always was not tested at all. Why? The so-called "test set" was used in the Post-Selection step of the training stage. This paper establishes a theorem that a simple method called Pure-Guess Nearest Neighbor (PGNN) reaches any required errors on validation set and test set, including zero-error requirements, through the "Deep Learning" misconduct, as long as the test set is in the possession of the author and both the amount of storage space and the time of training are finite but unbounded. However, Deep Learning methods, like the PGNN method, apparently are not generalizable since they have never been tested at all by a valid test set.
translated by 谷歌翻译
Prompt learning recently become an effective linguistic tool to motivate the PLMs' knowledge on few-shot-setting tasks. However, studies have shown the lack of robustness still exists in prompt learning, since suitable initialization of continuous prompt and expert-first manual prompt are essential in fine-tuning process. What is more, human also utilize their comparative ability to motivate their existing knowledge for distinguishing different examples. Motivated by this, we explore how to use contrastive samples to strengthen prompt learning. In detail, we first propose our model ConsPrompt combining with prompt encoding network, contrastive sampling module, and contrastive scoring module. Subsequently, two sampling strategies, similarity-based and label-based strategies, are introduced to realize differential contrastive learning. The effectiveness of proposed ConsPrompt is demonstrated in five different few-shot learning tasks and shown the similarity-based sampling strategy is more effective than label-based in combining contrastive learning. Our results also exhibits the state-of-the-art performance and robustness in different few-shot settings, which proves that the ConsPrompt could be assumed as a better knowledge probe to motivate PLMs.
translated by 谷歌翻译